Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Hazard Mater ; 449: 131038, 2023 05 05.
Article in English | MEDLINE | ID: covidwho-2239747

ABSTRACT

Face masks (FMs) are essential to limit the spread of the coronavirus during pandemic, a considerable of which are accumulated on the coast. However, limited is known about the microbial profile in the biofilm of the face masks (so-called plastisphere) and the impacts of face masks on the surrounding environments. We herein performed face mask exposures to coastal sediments and characterized the microbial community and the antibiotic resistome. We detected 64 antibiotic-resistance genes (ARGs) and 12 mobile gene elements (MGEs) in the plastisphere. Significant enrichments were found in the relative abundance of total ARGs in the plastisphere compared to the sediments. In detail, the relative abundance of tetracycline, multidrug, macrolide-lincosamide-streptogramin B (MLSB), and phenicol-resistant genes had increased by 5-10 times. Moreover, the relative abundance of specific hydrocarbonoclastic bacteria (e.g., Polycyclovorans sp.), pathogens (e.g., Pseudomonas oleovorans), and total MGEs significantly increased in the sediments after face mask exposure, which was congruent with the alteration of pH value and metal concentrations in the microcosms. Our study demonstrated the negative impacts of FMs on coastal environments regardless of the profiles of ARGs or pathogens. These findings improved the understanding of the ecological risks of face masks and underlined the importance of beach cleaning.


Subject(s)
Anti-Bacterial Agents , Microbiota , Genes, Bacterial , Masks , Bacteria/genetics
2.
Sci Total Environ ; 825: 153880, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1692895

ABSTRACT

Since the COVID-19 outbreak in early 2020, face mask (FM) has been recognized as an effective measure to reduce the infection, increasing its consumption across the world. However, the large amount of at-home FM usage changed traditional medical waste management practices, lack of improper management. Currently, few studies estimate FM consumption at a global scale, not to say a comprehensive investigation on the environmental risks of FM from a life cycle perspective. Therefore, global FM consumption and its associated environmental risks are clarified in the present study. Our result shows that 449.5 billion FMs were consumed from January 2020 to March 2021, with an average of 59.4 FMs per person worldwide. This review also provides a basis to understand the environmental risk of randomly disposed of FM and highlights the urgent requirement for the attention of FMs waste management to prevent pollution in the near future.


Subject(s)
COVID-19 , COVID-19/epidemiology , Humans , Masks , Pandemics , Plastics , SARS-CoV-2
3.
J Hazard Mater ; 421: 126679, 2022 01 05.
Article in English | MEDLINE | ID: covidwho-1313241

ABSTRACT

Intensive disinfection of wastewater during the COVID-19 pandemic might elevate the generation of toxic disinfection byproducts (DBPs), which has triggered global concerns about their ecological risks to natural aquatic ecosystems. In this study, the toxicity of 17 DBPs typically present in wastewater effluents on three representative microalgae, including Scenedesmus sp. (Chlorophyta), Microcystis aeruginosa (Cyanophyta), and Cyclotella sp. (Bacillariophyta) was investigated. The sensitivities of the three microalgae to DBPs varied greatly from species to species, indicating that DBPs may change the structure of phytoplankton communities. Later, co-cultures of these phytoplankton groups as a proxy of ecological freshwater scenario were conducted to explore the impacts of DBPs on phytoplankton community succession. M. aeruginosa became surprisingly dominant in co-cultures, representing over 50% after dosing with monochloroacetic acid (MCAA, 0.1-10 mg/L). The highest proportion of M. aeruginosa was 70.3% when exposed to 2 mg/L MCAA. Although Scenedesmus sp. dominated in monochloroacetonitrile (MCAN) exposure, M. aeruginosa accounted for no less than 30% even at 40 mg/L MCAN. In this study, DBPs disrupted the original inter-algal relationship in favor of M. aeruginosa, suggesting that DBPs may contribute to the outbreak of cyanobacterial blooms in aquatic ecosystems.


Subject(s)
Disinfectants/toxicity , Phytoplankton/drug effects , Scenedesmus , Coculture Techniques , Disinfection , Ecosystem , Fresh Water , Scenedesmus/drug effects
4.
Environ Sci Technol ; 55(15): 10534-10541, 2021 08 03.
Article in English | MEDLINE | ID: covidwho-1270648

ABSTRACT

Intensified disinfection of wastewater during the COVID-19 pandemic increased the release of toxic disinfection by-products (DBPs). However, studies relating to the ecological impacts of DBPs on the aquatic environment remain insufficient. In this study, we comparatively investigated the toxicities and ecological risks of 17 typical, halogenated DBPs to three trophic levels of organisms in the freshwater ecosystem, including phytoplankton (Scenedesmus sp.), zooplankton (Daphnia magna), and fish (Danio rerio). Toxicity of DBPs was found to be species-specific: Scenedesmus sp. was the most sensitive to haloacetic acids, while D. magna was the most sensitive to haloacetonitriles and trihalomethanes. Specific to each DBP, toxicities were also related to their classes and substituted halogen atoms. Damage to photosystems and oxidative stress served as the potential mechanisms for DBPs toxicity to microalgae. The different sensitivities to DBPs indicate that a battery of bioassays with organisms at different trophic levels is necessary to determine the ecotoxicity of DBPs. Furthermore, the ecological risks of DBPs were assessed by calculating the risk quotients (RQs) based on toxicity data from multiple bioassays. The cumulative RQs of DBPs to all the organisms were greater than 1.0, indicating high ecological risks of DBPs in wastewater effluents.


Subject(s)
COVID-19 , Disinfectants , Water Pollutants, Chemical , Water Purification , Animals , Aquatic Organisms , Disinfectants/toxicity , Disinfection , Ecosystem , Halogenation , Humans , Pandemics , SARS-CoV-2 , Trihalomethanes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL